Integration and scaling of UV-B radiation effects on plants: from DNA to leaf
A process-based model integrating the effects of UV-B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV-B radiation- induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV-B radiation-induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclob- utane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV-B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine-pyrimidone (6-4) photoproducts (6-4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV-B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV-B radiation levels are more detri-mental than short, high doses of UV-B radiation. The combination of low temperature and increased UV-B radiation was more significant in the level of UV-B radiation-induced damage than UV-B radiation alone. Slow-growing leaves were more affected by increased UV-B radiation than fast-growing leaves.
Publication Date: 2014
Credits: Ecology and Evolution 2014; 5(13): 2544–2555 doi: 10.1002/ece3.1332
Fair Use OK
DOWNLOAD FILE — PDF document, 254 kB (261,047 bytes)