Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Navigate WLFW Landscapes
Grasslands and Savannas
Aquatics
Eastern Deciduous Forests
Western Landscapes
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
Navigate Target Species
American Black Duck
Blanding's Turtle
Bog turtle
Colorado River Mussels
Conasauga River Aquatic Species
Eastern Hellbender
Golden-Winged Warbler
Gopher Tortoise
Lesser Prairie-Chicken
Monarch Butterfly
Northern Bobwhite, Grasslands & Savannas
Northeast Turtles
Sage Grouse
Shorebirds of Louisiana Wetlands
Southwestern Willow Flycatcher
Yazoo Darter
Companion Sites
Applcc
Conservation Design
Conservation Planning Atlas
Conservation Planning and GIS Resources
Eastern Brook Trout Joint Venture
Ecosystem Benefits and Risks
Energy
Nature and Society
Imperiled Aquatic Species for the UTRB
North Atlantic LCC
Science Applications Online Learning
Southeast Aquatic Resources Partnership
Tennessee River Basin
Whitewater to Bluewater
Skip to content.
|
Skip to navigation
Search Site
only in current section
Advanced Search…
Sections
Home
About
Catalog: How to use the Landscape Partnership
Services
Video: Intro to the Landscape Partnership Workspaces
Working Lands for Wildlife (WLFW) Workspaces
FAQs
Video: Welcome to the Landscape Partnership
A Video Collection on LP Tools
LP Members
Eastern Brook Trout
Southeast Aquatic Resources Partnership SARP
Working Lands for Wildlife
Home
About
Landscapes & Wildlife
Landowner Information
Learning & Tech Transfer
Issues
News & Announcements
Workspace
Workspaces
Organizations Search
Our Community
Expertise Search
Voices from the Community
Community Map
How To Use The LP Expertise Search
WLFW
Home
About
LP Members
Working Lands for Wildlife
Home
About
Our Partners and Organizations
Our Community and Expertise Search
Where We Work
Landscapes & Wildlife
Landscapes
Wildlife
Landowner Information
Landowner Forums
Landowner Resources
Landowner Feedback
Learning & Tech Transfer
General Resources and Publications
Landscape Partnership Online Learning Network
Webinars & Videos
Apps, Maps, & Data
Training Resources
Issues
The Anchor Approach to Connectivity
Equity & Inclusion
Wildland Fire
Eastern Deciduous Forest Health
Southeast FireMap
News & Announcements
Events
WLFW Newsletters
Workspace
Our Community
WLFW
Issues
Resources
Projects
Apps, Maps, & Data
News & Events
Training
Issues
The Anchor Approach to Connectivity
Anchor Resources
WLFW
Wildland Fire
SE FireMap
Equity & Inclusion
Home
Resources
Training
Community Hub
Nature and Society
Climate Context
Ecosystem Benefits & Risks
Energy
Resources
Projects
Project Search
Submit a Project
Products
Science Investments
Chesapeake Bay
Agenda North Atlantic LCC Meeting with USFWS Chesapeake Bay Area Staff
Presentation - Aquatic, Terrestrial and Landscape Conservation Design Tools and Products of the North Atlantic LCC
Presentation - Overview of North Atlantic LCC Approach, Partnership & Products & Some Coastal Stuff
Fact Sheet - The North Atlantic LCC in the Chesapeake Bay Watershed
Fact Sheet - Science Products from the North Atlantic LCC
Excercise - Using NALCC Conservation Planning Atlas on Data Basin
Landscope Chesapeake Overview
Introduction to Data Basin
Connecticut River Watershed Pilot
About the Pilot
Documents
Connecticut River Pilot Core Team
Aquatic Technical Subteam
Terrestrial and Wetland Technical Subteam
Calendar
Conservation Planning Atlas
U.S. Fish & Wildlife Service Gopher Tortoise
Apps, Maps, & Data
Literature Gateway: A Systemic Map of Bird-Vegetation Relationships in Eastern and Boreal Forests
Bobscapes
BirdLocale
SE FireMap
Landscape Partnership Spatial Datasets
Aquatic and Freshwater Spatial Data
North Atlantic Spatial Data
Appalchian Boundary and Resource Maps
Regional and National Maps
Zip Area Maps
GIS & Conservation Planning Toolkit
Home
Conservation Planning
Tools & Resources
Planning In Practice
Data
Training
News & Events
Events
Conservation Newsletters
Training
Videos and Webinars
Training Resources Exchange
Landscape Partnership Online Learning Network
Personal tools
Log in
Jump to Child Site
Landscape Partnership
Appalachian Naturescape
Aquatics
BirdLocale
Black Duck
Bobscapes
Bog Turtle
Eastern Deciduous Forests
Eastern Hellbender
Ecosystem Benefits & Risks
Energy
Equity & Inclusion
GIS & Conservation Planning Toolkit
Golden-Winged Warbler
Grasslands and Savannas
Imperiled Aquatic Species Conservation Strategy for the Upper TN River Basin
Nature and Society
Northern Bobwhite Quail
SE FireMap
The Anchor Approach to Connectivity
The Literature Gateway
Western Landscapes
Wildland Fire
Working Lands for Wildlife
You are here:
Home
Info
Modified items
All recently modified items, latest first.
FOREST REMOVAL AND THE CASCADE OF EFFECTS CORRESPONDING WITH AN OZARK HELLBENDER POPULATION DECLINE
Populations of the endangered Ozark Hellbender salamander (Cryptobranchus alleganiensis bishopi) in the North Fork of the White River (NFWR) in Missouri and other streams have declined precipitously in recent decades. Deforestation of the riparian and nearby upland habitat has corresponded with in-river habitat changes and other interacting stressors that coincide chronologically with the precipitous decline. We review the cascade of effects, including changes in water quality, benthic habitat, illegal and scientific harvesting, and introduced and reintroduced species occurrence that followed deforestation in the context of their impacts on hellbenders and relationship with other stressors such as climate change. In-river habitat changes since the 1960s include benthic microhabitat alterations associated with redistribution of gravel, siltation, and sedimentation and, in part, increases in nuisance vegetation, including periphyton. Deforestation of riparian and nearby upland habitats increased access and opportunities for human activities such as recreation, wildlife collection, and development. The subsequent degradation of stream habitat and water quality following deforestation reducedthe carrying capacity for the NFWR Ozark Hellbender population and had negative consequences on population health.
Movement and Habitat Use of Eastern Hellbenders (Cryptobranchus alleganiensis alleganiensis) Following Population Augmentation
With amphibian declines at crisis levels, translocations, including population augmentations, are commonly used for amphibian conservation. Eastern Hellbenders (Cryptobranchus alleganiensis alleganiensis) have declined to low densities in many areas of their range, making them ideal candidates for population augmentation. Both wild adults and captive-reared juveniles have been used for augmentations, but their suitability has never been directly compared. Herein, we use radio telemetry with Eastern Hellbenders to examine patterns of site fidelity, movement, and habitat use over a 2-yr period for adult residents, wild adult translocates, and captive-reared juvenile translocates. We used generalized linear models and generalized linear mixed models to identify temporal trends and explore the effects of residential status (resident vs. translocate) and origin/age (captive-reared juveniles vs. wild adults) on various ecological and behavioral traits relating to habitat. Site fidelity was high in adult residents and wild adult translocates, but lower in captive-reared juvenile translocates. Both adult and juvenile translocates had greater mean movement distances than residents, leading to larger home range sizes, but these differences decreased over time. Wild adult translocates had a higher probability of using artificial nest rocks than adult residents or captive-reared juvenile translocates. This pattern was most prevalent early in the study, indicating these shelters are particularly useful during the transition to release sites. Captive-reared juvenile translocates had lower site fidelity and utilized suboptimal habitat (smaller and fewer shelter rocks) compared to wild adults. Compared to previous studies, translocations had fewer negative effects on site residents or wild translocates and might be effective at promoting growth of Hellbender populations. However, translocations of captive-reared juveniles were less successful. As we are uncertain whether captive-rearing or ontogeny led to these differences, both longer head-starting times and conditioning should be explored to improve outcomes in captive-reared juvenile cohorts.
Pathogenic Chytrid Fungus Batrachochytrium dendrobatidis, but Not B. salamandrivorans, Detected on Eastern Hellbenders
Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs), is linked to die-offs in European fire salamanders (Salamandra salamandra). Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis), for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0–0.04). Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34), representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents) compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.
Importance of demographic surveys and public lands for the conservation of eastern hellbenders Cryptobranchus alleganiensis alleganiensis in southeast USA
Comparisons of recent and historic population demographic studies of eastern hellbenders Cryptobranchus alleganiensis alleganiensis have identified significant population declines and extirpations associated with habitat degradation, poor water quality and disease, leading to nomination as a candidate for listing under the Endangered Species Act. However, populations in the southern Appalachian region of the range have received less attention despite relatively high levels of watershed protection due to the establishment of federally protected National Forest and National Park public lands. These watersheds likely represent some of the best remaining available habitat, yet the lack of published studies make assessment of population stability and viability very difficult. Our objectives were to (1) conduct a capture-mark-recapture (CMR) demographic study and a point transect survey on the Hiwassee River in Tennessee which is designated a National Scenic River, and is largely contained within the Cherokee National Forest, (2) quantify the size structure of the population, (3) compare abundance, survival and recruitment with historic and contemporary hellbender populations across the range, (4) assess the importance of this population and the significance of National Forest and National Park lands in the context of hellbender population conservation in the southeastern United States. We detected all age classes present, with larval hellbenders comprising 21.5% of captures. Using a combination of static life table and CMR methods, we determined that survival rates during the first year were low (~10%), but were high (68–94%) for taggable sized hellbenders. Density of hellbenders at the study site was very high (84 taggable sized hellbenders per 100m of river) compared to recent demographic studies conducted in other regions of the range. We detected hellbenders over ~28 km of river, with a mean density of 23 taggable sized hellbenders per 100m of river, and a total population estimate of 6440 taggable hellbenders. National Forest and National Park lands are likely to continue to play a particularly important role in providing suitable habitat for hellbenders in the southern Appalachians. In fact, only six of 21 known hellbender locations in Tennessee appear to show consistent larval recruitment, all of which are located within or adjacent to National Forest or National Park land.
Population Genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) across Multiple Spatial Scales
Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis) is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical) scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states). We identified two genetically differentiated groups at the range-wide scale: 1) the Ohio River drainage and 2) the Tennessee River drainage. An analysis of molecular variance (AMOVA) based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94–98%) occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD) at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species.
Theory and practice of the hydrodynamic redesign of artifical hellbender habitat
The success of nest boxes in Missouri led researchers to test whether similar management tools could increase C. a. alleganiensis populations in the streams of western North Carolina, where these salamanders are listed as a Species of Special Concern (Messerman 2014). Fifty-four nest boxes were constructed following the boot-shaped design of Briggler and Ackerson (2012) in May 2013, and were installed across five known C. alleganiensis stream sites between late June and early August 2013. Messerman (2014) then monitored each nest box every three to four weeks through November 2013, and the boxes were revisited in August 2014 and July 2015 to observe structural condition and occupancy (Messerman, pers. obs.). Of the 54 nest boxes, only two structures at a single site were confirmed as inhabited in 2014 and 2015, and no breeding events were detected (Messerman, pers. obs.). Moreover, many of these ~50 lb concrete boxes moved in flood events or accumulated sediment at the downstream tunnel entrance (Messerman 2014). The low success of the boot-shaped nest box design in North Carolina may be attributed to the sites generally being narrower and shallower than those in Missouri, with much of the substrate consisting of bedrock slabs covered by relatively thin layers of rock, gravel and silt. Here we address the observed shortcomings of the original North Carolina design through the lens of engineering, and present a new and easily implemented nest box model for use in streams like those found in western North Carolina.
Movement and habitat use of Eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) following population augmentation
With amphibian declines at crisis levels, translocations, including population augmentations, are commonly used for amphibian conservation. Eastern Hellbenders (Cryptobranchus alleganiensis alleganiensis) have declined to low densities in many areas of their range, making them ideal candidates for population augmentation. Both wild adults and captive-reared juveniles have been used for augmentations, but their suitability has never been directly compared. Herein, we use radio telemetry with Eastern Hellbenders to examine patterns of site fidelity, movement, and habitat use over a 2-yr period for adult residents, wild adult translocates, and captive-reared juvenile translocates. We used generalized linear models and generalized linear mixed models to identify temporal trends and explore the effects of residential status (resident vs. translocate) and origin/age (captive-reared juveniles vs. wild adults) on various ecological and behavioral traits relating to habitat. Site fidelity was high in adult residents and wild adult translocates, but lower in captive-reared juvenile translocates. Both adult and juvenile translocates had greater mean movement distances than residents, leading to larger home range sizes, but these differences decreased over time. Wild adult translocates had a higher probability of using artificial nest rocks than adult residents or captive-reared juvenile translocates. This pattern was most prevalent early in the study, indicating these shelters are particularly useful during the transition to release sites. Captive-reared juvenile translocates had lower site fidelity and utilized suboptimal habitat (smaller and fewer shelter rocks) compared to wild adults. Compared to previous studies, translocations had fewer negative effects on site residents or wild translocates and might be effective at promoting growth of Hellbender populations. However, translocations of captive-reared juveniles were less successful. As we are uncertain whether captive-rearing or ontogeny led to these differences, both longer head-starting times and conditioning should be explored to improve outcomes in captive-reared juvenile cohorts.
The use of nest boxes by the hellbender salamander in Western North Carolina
The hellbender salamander (Cryptobranchus alleganiensis) is a unique, large-bodied amphibian that serves as an excellent water quality indicator species in Western North Carolina. This animal has suffered substantial population declines over the past four decades throughout its range. Increased stream siltation largely attributed to human development fills the concave undersides of large rocks, consequently destroying hellbender breeding habitat. Habitat degradation has contributed to reductions in North Carolinian populations to such a degree that the species is now considered of Special Concern in the state. In order to restore hellbender population sizes under current land use conditions, researchers have recently begun developing artificial nest boxes that exclude sediment and promote increased reproduction. To identify the short-term efficacy of these shelters as substitutes for natural hellbender habitat in Western North Carolina, I constructed and placed 54 boxes across five river sites throughout the region. Following summer nest box installment, I examined each shelter through the breeding season for hellbender in habitation and to determine the quality of water passing through the structures. Additionally, I created a maximum entropy species distribution model and conducted a spatial connectivity analysis for the hellbenders of Western North Carolina to identify ideal locations for nest boxes installation in the future. Although no hellbenders have yet been detected in the artificial shelters, additional structural improvements and time may reveal nest boxes to be useful conservation tools for this iconic species of Special Concern.
Evaluating artificial shelter arrays as a minimally invasive monitoring tool for the hellbender (Cryptobranchus alleganiensis)
Hellbenders Cryptobranchus alleganiensis are critically imperiled amphibians throughout the eastern USA. Rock-lifting is widely used to monitor hellbenders but can severely disturb habitat. We asked whether artificial shelter occupancy (the proportion of occupied shelters in an array) would function as a proxy for hellbender abundance and there by serve as a viable alternative to rock-lifting. We hypothesized that shelter occupancy would vary spatially in response to hellbender density, natural shelter density, or both, and would vary temporally with hellbender seasonal activity patterns and time since shelter deployment. We established shelter arrays (n = 30 shelters each) in 6 stream reaches and monitored them monthly for up to 2 yr. We used Bayesian mixed logistic regression and model ranking criteria to assess support for hypotheses concerning drivers of shelter occupancy. In all reaches, shelter occupancy was highest from June–August each year and was higher in Year 2 relative to Year 1. Our best-supported model indicated that the extent of boulder and bedrock (hereafter, natural shelter) in a reach mediated the relationship between hellbender abundance and shelter occupancy. More explicitly, shelter occupancy was positively correlated with abundance when natural shelter covered <20% of a reach, but uncorrelated with abundance when natural shelter was more abundant. While shelter occupancy should not be used to infer variation in hellbender relative abundance when substrate composition varies among reaches, we showed that artificial shelters can function as valuable monitoring tools when reaches meet certain criteria, though regular shelter maintenance is critical.
Improving the Utility of Artificial Shelters for Monitoring Eastern Hellbender Salamanders (Cryptobranchus alleganienses alleganiensis)
Artificial shelters show great promise as novel, non-invasive tools for studying hellbenders, but their use thus far has faced several challenges. During initial trials in multiple river networks, artificial shelters routinely became blocked by sediment and dislodged during high stream discharge events, and were rarely used by hellbenders. We sought to determine whether these complications could be overcome via alternative shelter design, placement, and maintenance. Between 2013 and 2018, we deployed 438 artificial shelters of two different designs across ten stream reaches and three rivers in the upper Tennessee River Basin. We assessed evidence for several hypotheses, postulating broadly that the availability, stability, and use of artificial shelters by hellbenders would depend on how shelters were constructed, deployed, and/or maintained. We found that maintaining shelters at least once every 40 days limited sediment blockage, and building ~ 40 kg shelters with 3-4 cm thick walls and recessed lids improved their stability during high discharge events. Additionally, we found that hellbenders most frequently occupied and nested in artificial shelters when they were deployed in deeper (~50+ cm) portions of reaches with high adult hellbender densities. Our results suggest that artificial shelters can serve as effective tools for studying hellbenders when designed, deployed, and maintained with these advancements, but also highlight some limitations of their use.
Learn All About Hellbenders and Take a Tour
Do you know what a hellbender is or where they can be found? This live session will answer those questions for you, show you what they look like by taking you on a virtual tour, share where they live, what they like to eat and who their predators are.
10,000th Hellbender Released Into the Wild
HELLBENDER HISTORY -- the 10,000th hellbender was recently released into an Ozark river in an effort to support a declining population for the endangered species. The Saint Louis Zoo, MDC and U.S. Fish and Wildlife Service have partnered together for nearly 20 years during this effort. Learn more in this short video.
The Last Dragons - Protecting Appalachia's Hellbenders
An intimate glimpse at North America's Eastern Hellbender, an ancient salamander that lives as much in myth as in reality.... and in many waters, myths are all that remain of these sentinel stream-dwellers. Video by Freshwaters Illustrated.
American Black Duck Decision Support Tool
The Atlantic Coast Joint Venture Black Duck Decision Support Tool (DST) helps to identify the exact number of acres to protect, restore or maintain at the small watershed scale. Through this tool, land managers can determine the best way to contribute to achieving black duck goals anywhere on the landscape.
Ducks Unlimited
Ducks Unlimited is the world's leader in wetlands and waterfowl conservation.
Black Duck Joint Venture
The Black Duck Joint Venture is a North American Waterfowl Management Plan Conservation Partnership
American Black Duck Image
image.jpg
Virginia 644: Wetland Wildlife Habitat Management
This practice is supplemented with other wetland standards to provide financial assistance in the management of a wetland for wildlife habitat.
Maryland 644: Wetland Wildlife Habitat Management
This practice is supplemented with other wetland standards to provide financial assistance in the management of a wetland for wildlife habitat.
Maryland 315: Herbaceous Weed Treatment
This standard allows for the removal or control of herbaceous weeds including invasive, noxious, and prohibited plants. This practice is applicable for areas that have excessive Phragmites australis growth allowing for removal and management of these areas to let native plants to reestablish.
« Previous 20 items
Next 20 items »
1
...
76
77
78
79
80
81
82
...
675