Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Fact Sheets

Fact Sheets

SC Meeting, August 24-25, 2016

This meeting marked the LCCs transition from its 1st “development” phase (2012-2016) to a new “delivery” phase. We are soliciting partner input regarding how best to deliver the science to the partners. The Appalachian LCC is currently proposing to work through partner networks in focal areas to get the science integrated into on-the-ground conservation.

Read More…

Fact Sheet: Online Resources to Inform Natural Resource Management

Fact Sheet: Online Resources to Inform Natural Resource Management

Research from the Appalachian Landscape Conservation Cooperative (LCC) and the U.S. Forest Service is integrating society’s value of ecosystems with future risks, to inform natural resource planning and management across the Appalachians and help decision makers, industry and the public adopt policies that protect and invest in these resources.

Read More…

Connect the Connecticut - Fact Sheet

High-level overview of the landscape conservation design project. May 2016.

Read More…

Connect the Connecticut Report

Connect the Connecticut Report

Connect the Connecticut Report - report summarizing the process and results of the project. May 2016.

Read More…

Draft Connect the Connecticut Report

Current version of Connect the Connecticut report for Core Team review

Read More…

Environmental Flow Analysis for the Marcellus Shale Region PDF

Environmental Flow Analysis for the Marcellus Shale Region PDF

A technical report submitted to the Appalachian Landscape Conservation Cooperative in completion of grant# 2012-03 - Final Report

Read More…

Identifying Species in Pennsylvania Potentially Vulnerable to Climate Change

This report provides the methods and results of 85 species vulnerability assessments in Pennsylvania.

Read More…

Identifying Species in Pennsylvania Potentially Vulnerable to Climate Change

This report provides the methods and results of 85 species vulnerability assessments in Pennsylvania.

Read More…

Core Team Meeting Notes, 10-01-2015

Notes/summary from October 2015 Core Team Meeting

Read More…

The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century

The distribution and future fate of ectothermic organisms in a warming world will be dictated by thermal-scapes across landscapes. That is particularly true for stream fishes and cold-water species like trout, salmon, and char that are already constrained to high elevations and latitudes. The extreme climates in those environments also preclude invasions by most non-native species, so identifying especially cold habitats capable of absorbing future climate change while still supporting native populations would highlight important refugia. By coupling crowd-sourced biological datasets with high-resolution stream temperature scenarios, we delineate network refugia across >250 000 stream km in the Northern Rocky Mountains for two native salmonids—bull trout (BT) and cutthroat trout (CT). Under both moderate and extreme climate change scenarios, refugia with high probabilities of trout population occupancy (>0.9) were predicted to exist (33–68 BT refugia; 917–1425 CT refugia). Most refugia are on public lands (>90%) where few currently have protected status in National Parks or Wilderness Areas (<15%). Forecasts of refuge locations could enable protection of key watersheds and provide a foundation for climate smart planning of conservation networks. Using cold water as a ‘climate shield’ is generalizable to other species and geographic areas because it has a strong physiological basis, relies on nationally available geospatial data, and mines existing biological datasets. Importantly, the approach creates a framework to integrate data contributed by many individuals and resource agencies, and a process that strengthens the collaborative and social networks needed to preserve many cold-water fish populations through the 21st century.

Read More…

CONSERVATION EASEMENTS AT THE CLIMATE CHANGE CROSSROADS

This article examines the conundrum that occurs when climate change leads to a landscape that conflicts with conservation easement terms. In facing the challenge of a disconnect between conservation easements and a changing world, there are two main tacks. First, conservationists can make conservation easements fit the changing landscape. Second, conservationists can change the landscape to fit the conservation easements. Both of these options present challenges and conflict with the essence of the conservation easement tool. A conservation easement that is too changeable endangers the perpetual protection that is the cornerstone of conservation easements. But, forcing the landscape to fit a conservation easement requires active management, something more often associated with fee-simple ownership. The solution to using conservation easements in a changing world lies somewhere between these two extremes, with the most important level of analysis being an assessment of when to use conservation easements.

Read More…

Planetary boundaries: Guiding human development on a changing planet

The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth System. Here, we revise and update the planetary boundaries framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth System into a new state should they be substantially and persistently transgressed.

Read More…

Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2C global warming is highly dangerous

There is evidence of ice melt, sea level rise to +5–9 m, and extreme storms in the prior interglacial period that was less than 1◦C warmer than today. Human-made climate forcing is stronger and more rapid than paleo forcings, but much can be learned by combining insights from paleoclimate, climate modeling, and on-going observations. We argue that ice sheets in contact with the ocean are vulnerable to non-linear disintegration in response to ocean warming, and we posit that ice sheet mass loss can be approximated by a doubling time up to sea level rise of at least several meters. Doubling times of 10, 20 or 40 years yield sea level rise of several meters in 50, 100 or 200 years. Paleoclimate data reveal that subsurface ocean warming causes ice shelf melt and ice sheet discharge. Our climate model exposes amplifying feedbacks in the Southern Ocean that slow Antarctic bottom water formation and increase ocean temperature near ice shelf grounding lines, while cooling the surface ocean and increasing sea ice cover and water column stability. Ocean surface cooling, in the North Atlantic as well as the Southern Ocean, increases tropospheric horizontal temperature gradients, eddy kinetic energy and baroclinicity, which drive more powerful storms. We focus attention on the Southern Ocean’s role in affecting atmospheric CO2 amount, which in turn is a tight control knob on global climate. The millennial (500–2000 year) time scale of deep ocean ventilation affects the time scale for natural CO2 change, thus the time scale for paleo global climate, ice sheet and sea level changes. This millennial carbon cycle time scale should not be misinterpreted as the ice sheet time scale for response to a rapid human-made climate forcing. Recent ice sheet melt rates have a doubling time near the lower end of the 10–40 year range. We conclude that 2 ◦C global warming above the preindustrial level, which would spur more ice shelf melt, is highly dangerous. Earth’s energy imbalance, which must be eliminated to stabilize climate, provides a crucial metric.

Read More…

National post-2020 greenhouse gas targets and diversity-aware leadership

Achieving the collective goal of limiting warming to below 2 ◦ C or 1.5 ◦ C compared to pre-industrial levels requires a transition towards a fully decarbonized world. Annual greenhouse gas emissions on such a path in 2025 or 2030 can be allocated to individual countries using a variety of allocation schemes. We reanalyse the IPCC literature allocation database and provide country-level details for three approaches. At this stage, however, it seems utopian to assume that the international community will agree on a single allocation scheme. Here, we investigate an approach that involves a major-economy country taking the lead. In a bottom-up manner, other countries then determine what they consider a fair comparable target, for example, either a ‘per-capita convergence’ or ‘equal cumulative per-capita’ approach. For example, we find that a 2030 target of 67% below 1990 for the EU28, a 2025 target of 54% below 2005 for the USA or a 2030 target of 32% below 2010 for China could secure a likely chance of meeting the 2◦C target in our illustrative default case. Comparing those targets to post-2020 mitigation targets reveals a large gap. No major emitter can at present claim to show the necessary leadership in the concerted effort of avoiding warming of 2 ◦ C in a diverse global context.

Read More…

From sink to source: Regional variation in U.S. forest carbon futures

The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

Read More…

Vulnerability of at-risk species to climate change in New York

This report provides the methods and results of climate change vulnerability assessments of 119 species in New York.

Read More…

Vulnerability of at-risk species to climate change in New York

This report provides the methods and results of climate change vulnerability assessments of 119 species in New York.

Read More…

Fact Sheet - Science Products from the North Atlantic LCC

Fact Sheet providing examples of Science Products from the North Atlantic LCC with links

Read More…

Fact Sheet - The North Atlantic LCC in the Chesapeake Bay Watershed

Fact Sheet providing examples of products and partnerships associated with the North Atlantic LCC in the Chesapeake Bay Watershed with links

Read More…