NRCS Conservation Practices and Materials
From sink to source: Regional variation in U.S. forest carbon futures
The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.
Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions
the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.
Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions
the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.
Pedoecological Modeling to Guide Forest Restoration using Ecological Site Descriptions
the u.s. department of agriculture (usda)-natural resources conservation service (nrcs) uses an ecological site description (esd) framework to help incorporate interactions between local soil, climate, flora, fauna, and humans into schema for land management decision-making. we demonstrate esd and digital soil mapping tools to (i) estimate potential o horizon carbon (c) stock accumulation from restoring alternative ecological states in high-elevation forests of the central appalachian Mountains in west Virginia (wV), usa, and (ii) map areas in alternative ecological states that can be targeted for restoration. this region was extensively disturbed by clear-cut harvests and related fires during the 1880s through 1930s. we combined spodic soil property maps, recently linked to historic red spruce–eastern hemlock (Picea rubens–Tsuga canadensis) forest communities, with current forest inventories to provide guidance for restoration to a historic reference state. this allowed mapping of alternative hardwood states within areas of the spodic shale uplands conifer forest (scF) ecological site, which is mapped along the regional conifer-hardwood transition of the central appalachian Mountains. Plots examined in these areas suggest that many of the spruce-hemlock dominated stands in wV converted to a hardwood state by historic disturbance have lost at least 10 cm of o horizon thickness, and possibly much more. Based on this 10 cm estimate, we calculate that at least 3.74 to 6.62 tg of c were lost from areas above 880 m elevation in wV due to historic disturbance of o horizons, and that much of these stocks and related ecosystem functions could potentially be restored within 100 yr under focused management, but more practical scenarios would likely require closer to 200 yr.
Downstream Warming and Headwater Acidity May Diminish Coldwater Habitat in Southern Appalachian Mountain Streams
Stream-dwelling species in the U.S. southern Appalachian Mountains region are particularly vulnerable to climate change and acidification. The objectives of this study were to quantify the spatial extent of contemporary suitable habitat for acid- and thermally sensitive aquatic species and to forecast future habitat loss resulting from expected temperature increases on national forest lands in the southern Appalachian Mountain region. The goal of this study was to help watershed managers identify and assess stream reaches that are potentially vulnerable to warming, acidification, or both. To our knowledge, these results represent the first regional assessment of aquatic habitat suitability with respect to the combined effects of stream water temperature and acid-base status in the United States. Statistical models were developed to predict July mean daily maximum water temperatures and air-water tem- perature relations to determine potential changes in future stream water temperatures. The length of stream considered suitable habitat for acid- and thermally sensitive species, based on temperature and acid neutralizing capacity thresholds of 20°C and 50 μeq/L, was variable throughout the national forests considered. Stream length displaying temperature above 20°C was generally more than five times greater than the length predicted to have acid neutralizing capacity below 50 μeq/L. It was uncommon for these two stressors to occur within the same stream segment. Results suggested that species’ distributional shifts to colder, higher elevation habitats under a warming climate can be constrained by acidification of headwater streams. The approach used in this study can be applied to evaluate climate change impacts to stream water resources in other regions.
Climate Change Vulnerability Assessment of Species of Concern in West Virginia
Elizabeth Byers and Sam Norris. 2011. Climate change vulnerability assessment of species of concern in West Virginia. West Virginia Division of Natural Resources, Elkins, WV. This project assessed and ranked the relative climate change vulnerability of 185 animal and plant species in West Virginia.
Climate Change Vulnerability Assessment of Species of Concern in West Virginia
Elizabeth Byers and Sam Norris. 2011. Climate change vulnerability assessment of species of concern in West Virginia. West Virginia Division of Natural Resources, Elkins, WV. This project assessed and ranked the relative climate change vulnerability of 185 animal and plant species in West Virginia.
Assessing the Potential Effects of Climate Change on Species in the Cumberland Piedmont Network of the National Park Service
In this study, we evaluate the climate change vulnerability of a subset of key species found in the Cumberland Piedmont Network (CUPN) of the National Park Service (NPS), an ecologically important and diverse region. We developed a list of species of conservation concern (globally and sub-nationally) within each of the fourteen NPS units in the CUPN. Next, we employed NatureServe’s Climate Change Vulnerability Index (CCVI) in order to determine which of those species may be most vulnerable to climate change, based on each species’ 1) direct exposure to climate change, 2) indirect exposure to climate change, 3) sensitivity, and 4) documented/ modeled response to climate change. CCVI results showed a range of vulnerability scores among taxonomic groups, including high vulnerability for mollusks and low vulnerability for migrant songbirds. Furthermore, we found that species of conservation concern were not necessarily those most vulnerable to climate change.
Assessing the Potential Effects of Climate Change on Species in the Cumberland Piedmont Network of the National Park Service
In this study, we evaluate the climate change vulnerability of a subset of key species found in the Cumberland Piedmont Network (CUPN) of the National Park Service (NPS), an ecologically important and diverse region. We developed a list of species of conservation concern (globally and sub-nationally) within each of the fourteen NPS units in the CUPN. Next, we employed NatureServe’s Climate Change Vulnerability Index (CCVI) in order to determine which of those species may be most vulnerable to climate change, based on each species’ 1) direct exposure to climate change, 2) indirect exposure to climate change, 3) sensitivity, and 4) documented/ modeled response to climate change. CCVI results showed a range of vulnerability scores among taxonomic groups, including high vulnerability for mollusks and low vulnerability for migrant songbirds. Furthermore, we found that species of conservation concern were not necessarily those most vulnerable to climate change.
Natural Resources Conservation Service
NRCS provides America's farmers and ranchers with financial and technical assistance to voluntarily put conservation on the ground, not only helping the environment but agricultural operations too.
Steering Committee Meeting Participants
List of those who attended the 2015 Appalachian LCC Steering Committee Meeting.
National LCC Presentation
Given by National LCC Coordinator Elsa Haubold.
Scenarios of future land use change around United States’ protected areas
Land use change around protected areas can diminish their conservation value, making it important to predict future land use changes nearby. Our goal was to evaluate future land use changes around protected areas of different types in the United States under different socioeconomic scenarios. We analyzed econometric-based projections of future land use change to capture changes around 1260 protected areas, including National Forests, Parks, Refuges, and Wilderness Areas, from 2001 to 2051, under different land use policies and crop prices. Our results showed that urban expansion around protected areas will continue to be a major threat, and expand by 67% under business-as-usual conditions. Concomitantly, a substantial number of protected areas will lose natural vegetation in their surroundings. National land-use policies or changes in crop prices are not likely to affect the overall pattern of land use, but can have effects in certain regions. Discouraging urbanization through zoning, for example, can reduce future urban pressures around National Forests and Refuges in the East, while the implementation of an afforestation policy can increase the amount of natural vegetation around some Refuges throughout the U.S. On the other hand, increases in crop prices can increase crop/pasture cover around some protected areas, and limit the potential recovery of natural vegetation. Overall, our results highlight that future land-use change around protected areas is likely to be substantial but variable among regions and protected area types. Safeguarding the conservation value of protected areas may require serious consideration of threats and opportunities arising from future land use.
Notes from 06-12-2015 Connecticut River Pilot Core Team Meeting
Summary of discussion and outcomes, including maps used to facilitate discussion during the meeting.
Soil Climate Analysis Network (SCAN)
The Soil Moisture/Soil Temperature (SM/ST) Pilot Project, a cooperative effort by the Resource Inventory Division and the Soil Survey Division of the Natural Resources Conservation Service, was designed to examine network communications, sensors, data collection electronics, station maintenance, data management, system interfaces, and management of a large cooperative nationwide, comprehensive soil moisture and climate information system. SCAN (Soil Climate Analysis Network) is a continuous climate monitoring program that is an outgrowth of the SM/ST Pilot Project.
New Farm Bill Guide Now Available
The North American Bird Conservation Initiative released the 2014 Farm Bill Field Guide to Fish and Wildlife Conservation.
Plan for the Population Restoration and Conservation of Imperiled Freshwater Mollusks of the Cumberland Region
The goal of this Plan is to provide a framework for the restoration of freshwater mollusk resources and their ecological functions to appropriate reaches of the Cumberlandian Region through the reintroduction, augmentation (R/A) and controlled propagation of priority mollusks. The Plan prioritizes propagation and R/A activities for Region mollusks and provides guidelines for resource managers and recovery partners. The Plan is not a legal document and is not intended to replace or supersede published recovery plans for listed mollusks.
Predicting Brook Trout Occurrence in Stream Reaches throughout their Native Range in the Eastern United States
Abstract The Brook Trout Salvelinus fontinalis is an important species of conservation concern in the eastern USA. We developed a model to predict Brook Trout population status within individual stream reaches throughout the species’ native range in the eastern USA. We utilized hierarchical logistic regression with Bayesian estimation to predict Brook Trout occurrence probability, and we allowed slopes and intercepts to vary among ecological drainage units (EDUs). Model performance was similar for 7,327 training samples and 1,832 validation samples based on the area under the receiver operating curve (»0.78) and Cohen’s kappa statistic (0.44). Predicted water temperature had a strong negative effect on Brook Trout occurrence probability at the stream reach scale and was also negatively associated with the EDU average probability of Brook Trout occurrence (i.e., EDU-specific intercepts). The effect of soil permeability was positive but decreased as EDU mean soil permeability increased. Brook Trout were less likely to occur in stream reaches surrounded by agricultural or developed land cover, and an interaction suggested that agricultural land cover also resulted in an increased sensitivity to water temperature. Our model provides a further understanding of how Brook Trout are shaped by habitat characteristics in the region and yields maps of stream-reach-scale predictions, which together can be used to support ongoing conservation and management efforts. These decision support tools can be used to identify the extent of potentially suitable habitat, estimate historic habitat losses, and prioritize conservation efforts by selecting suitable stream reaches for a given action. Future work could extend the model to account for additional landscape or habitat characteristics, include biotic interactions, or estimate potential Brook Trout responses to climate and land use changes.
Ten years of vegetation assembly after a North American mega fire
Altered fuels and climate change are transforming fire regimes in many of Earth’s biomes. Postfire reassembly of vegetation – paramount to C storage and biodiversity conservation – frequently remains unpredictable and complicated by rapid global change. Using a unique data set of pre and long-term postfire data, combined with long-term data from nearby unburned areas, we examined 10 years of understory vegetation assembly after the 2002 Hayman Fire. This fire was the largest wildfire in recorded history in Colorado, USA. Resistance (initial postfire deviance from pre- fire condition) and resilience (return to prefire condition) declined with increasing fire severity. However, via both resistance and resilience, ‘legacy’ species of the prefire community constituted >75% of total plant cover within 3 years even in severely burned areas. Perseverance of legacy species, coupled with new colonizers, created a persis- tent increase in community species richness and cover over prefire levels. This was driven by a first-year increase (maintained over time) in forbs with short life spans; a 2–3-year delayed surge in long-lived forbs; and a consistent increase in graminoids through the 10th postfire year. Burning increased exotic plant invasion relative to prefire and unburned areas, but burned communities always were >89% native. This study informs debate in the literature regarding whether these increasingly large fires are ‘ecological catastrophes.’ Landscape-scale severe burning was catastrophic from a tree overstory perspective, but from an understory perspective, burning promoted rich and productive native understories, despite the entire 10-year postfire period receiving below-average precipitation. Keywords: disturbance, exotic species, fire severity, Hayman Fire, Pinus ponderosa, resilience, resistance, succession, vegetation change
Document: January Core Team Meeting Notes/Summary
Notes and summary of presentations and discussions at the January Core Team meeting.