NRCS Conservation Practices and Materials
Proposed Timing and Process for Design Review
Short and long-term proposed steps for timing and process of design review and finalization
Conservation Strategy for Imperiled Aquatic Species in the UTRB
The Strategy provides guidance to Field Offices in reevaluating current ("status quo") conservation approaches in order to deliver the most cost effective approach toward the conservation and management of imperiled freshwater fish and mussel species in the Upper Tennessee River Basin.
AMJV Partnership Receives $8 Million RCPP Award to Enhance Cerulean Habitat
A project proposal from the Appalachian Mountains Joint Venture (AMJV) Partnership was one of 115 high-impact projects to receive in total more than $370 million as part of the new Regional Conservation Partnership Program (RCPP), Agriculture Secretary Tom Vilsack announced today.
UTRB Imperiled Aquatic Species Conservation Strategy [2015 presentation]
pdf copy of the UTRB Imperiled Aquatic Species Conservation Strategy briefing slides for team discussion on proposal to use UTRB strategy as the foundation upon which to pursue a landscape conservation design (LCD) project within the AppLCC. (2 slides/page). Note the slides with the (H) indicate those that are Hidden and not actually presented. (These are provided as background resources to the speaker.)
Pennsylvania Energy Impacts Assessment
In 2010, TNC scientists focused on projections of how new energy development could impact natural habitats in Pennsylvania to shape strategies that avoid or minimize those impacts.
AMJV Partnership Successes for Song Birds and Game Species
The benefits from managing habitat for game species and managing habitat for songbirds are not mutually exclusive. Creating and enhancing a variety of habitats supports a diversity of wildlife and activities, from birdwatching to hunting.
U.S. Forest Carbon and Climate Change Controversies and Win-Win Policy Approaches
As consensus grows about the serious impacts of global climate change, the role of forests in carbon storage is increasingly recognized. Terrestrial vegetation worldwide currently removes about 24 percent of the greenhouse gases released by industrial processes. Unfortunately, this contribution is approximately cancelled out by carbon released as a result of global deforestation and other ecosystem changes. Slowing or halting the rate of deforestation is thus one of the prime strategies to mitigate global climate change. The U.S. situation differs from the global one in several ways. Since both forest acres and average biomass per forest acre are currently increasing, as U.S. forests recover from past clearing or heavy harvest, our forest carbon stores are growing larger over time. However, our high rate of industrial emissions means that only about 10 percent of the carbon released from burning fossil fuels in the United States is captured by our forests. Moreover, net U.S. forest carbon sequestration has begun to slow in recent years as reforestation reaches its limits and development sprawls into more rural forested areas. U.S. forests could possibly capture a much higher portion of our industrial emissions, but only if we prevent forest conversion and development and manage our forests to maximize carbon stores.
TRY – a global database of plant traits
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world’s 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
The influence of conversion of forest types on carbon sequestration and other ecosystem services in the South Central United States
This paper develops a forestland management model for the three states in the South Central United States (Arkansas, Louisiana, and Mississippi). Forest type and land-use shares are estimated to be a function of economic and physical variables. The results suggest that while historically pine plantations in this region have been established largely on old agricultural land, in the future pine plantations are likely to occur on converted hardwood-forest lands. This shift in the supply of land for plantations could have large effects on above-ground carbon storage and other ecosystem services. Subsidies of approximately $12–27 per ha per year would maintain the area of hardwood forests and reduce carbon emissions from the above-ground and product pool carbon stocks over the next 30 years. Across the several scenarios considered, results suggest that maintaining hardwoods could be an efficient carbon sequestration alternative.
Soil Temperature following Logging-Debris Manipulation and Aspen Regrowth in Minnesota: Implications for Sampling Depth and Alteration of Soil Processes
Soil temperature is a fundamental controller of processes influencing the transformation and flux of soil C and nutrients following forest harvest. Soil temperature response to harvesting is influenced by the amount of logging debris (biomass) removal that occurs, but the duration, magnitude, and depth of influence is unclear. Logging debris manipulations (none, moderate, and heavy amounts) were applied following clearcut harvesting at four aspendominated (Populus tremuloides Michx.) sites in northeastern Minnesota, and temperature was measured at 10-, 30-, and 50-cm depths for two growing seasons. Across sites, soil temperature was significantly greater at all sample depths relative to uncut forest in some periods of each year, but the increase was reduced with increasing logging-debris retention. When logging debris was removed compared to when it was retained in the first growing season, mean growing season soil temperatures were 0.9, 1.0, and 0.8°C greater at 10-, 30-, and 50-cm depths, respectively. These patterns were also observed early in the second growing season, but there was no discernible difference among treatments later in the growing season due to the modifying effect of rapid aspen regrowth. Where vegetation establishment and growth occurs quickly, effects of logging debris removal on soil temperature and the processes influenced by it will likely be short-lived. The significant increase in soil temperature that occurred in deep soil for at least 2 yr after harvest supports an argument for deeper soil sampling than commonly occurs in experimental studies.
Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences
Plant roots serve as conduits for water flow not only from soil to leaves but also from wetter to drier soil. This hydraulic redistribution through root systems occurs in soils worldwide and can enhance stomatal opening, transpiration, and plant carbon gain. For decades, upward hydraulic lift (HL) of deep water through roots into dry, litter-rich, surface soil also has been hypothesized to enhance nutrient availability to plants by stimulating microbially controlled nutrient cycling. This link has not been demonstrated in the field. Working in sagebrush-steppe, where water and nitrogen limit plant growth and reproduction and where HL occurs naturally during summer drought, we slightly augmented deep soil water availability to 14 HL+ treatment plants throughout the summer growing season. The HL+ sagebrush lifted greater amounts of water than control plants and had slightly less negative predawn and midday leaf water potentials. Soil respiration was also aug- mented under HL+ plants. At summer’s end, application of a gas- based 15N isotopic labeling technique revealed increased rates of nitrogen cycling in surface soil layers around HL+ plants and increased uptake of nitrogen into HL+ plants’ inflorescences as sagebrush set seed. These treatment effects persisted even though unexpected monsoon rainstorms arrived during assays and increased surface soil moisture around all plants. Simulation models from ecosystem to global scales have just begun to include effects of hydraulic redistribution on water and surface energy fluxes. Results from this field study indicate that plants carrying out HL can also substantially enhance decomposition and nitrogen cycling in surface soils. rhizosphere | flowering | seed production
Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect
Drought- and insect-associated tree mortality at low-elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low-elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole-crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa-pc) derived from tree ring carbon isotope ratios (d13C), corrected for temporal trends in atmospheric CO2 and d13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa-pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa-pc to climate, and a steep relationship between pa-pc and BAI/BA. The pa-pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought – i.e., chronic water stress. It appears that chronic water stress predisposed low-elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in mid-latitude regions may drive increased mortality and ecotone shifts in temperate forests and woodlands. Keywords: altitude, climate change, die-off, photosynthesis, stomatal conductance, water availability
Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers
The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is difficult because such fires often exercise some degree of influence on their environment and behave erratically, sometimes dangerously. Alternate terms include “blow up” and “fire storm.” Fire managers examining fires over the last 100 years have come to understand many of the factors necessary for EFB development. This work produced guidelines included in current firefighter training, which presents the current methods of predicting EFB by using the crown fire model, which is based on the environmental influences of weather, fuels, and topography. Current training does not include the full extent of scientific understanding. Material in current training programs is also not the most recent scientific knowledge. National Fire Plan funds have sponsored newer research related to wind profiles’ influence on fire behavior, plume growth, crown fires, fire dynamics in live fuels, and conditions associated with vortex development. Of significant concern is that characteristic features of EFB depend on condi- tions undetectable on the ground, relying fundamentally on invisible properties such as wind shear or atmospheric stability. Obviously no one completely understands all the factors contributing to EFB because of gaps in our knowledge. These gaps, as well as the limitations as to when various models or indices apply should be noted to avoid application where they are not appropriate or warranted. This synthesis will serve as a summary of existing extreme fire behavior knowledge for use by fire managers, firefighters, and fire researchers. The objective of this project is to synthesize existing EFB knowledge in a way that connects the weather, fuel, and topographic factors that contribute to development of EFB. This synthesis will focus on the state of the science, but will also consider how that science is currently presented to the fire management community, including incident commanders, fire behavior analysts, incident meteorologists, National Weather Service office forecasters, and firefighters. It will seek to clearly delineate the known, the unknown, and areas of research with the greatest potential impact on firefighter protection.
Carbon Sequestration in Two Created Riverine Wetlands in the Midwestern United States
Wetlands have the ability to accumulate significant amounts of carbon (C) and thus could provide an effective approach to mitigate greenhouse gas accumulation in the atmosphere. Wetland hydrology, age, and management can affect primary productivity, decomposition, and ultimately C sequestration in riverine wetlands, but these aspects of wetland biogeochemistry have not been adequately investigated, especially in created wetlands. In this study we investigate the ability of created freshwater wetlands to sequester C by determining the sediment accretion and soil C accumulation of two 15-yr-old created wetlands in central Ohio—one planted and one naturally colonized. We measured the amount of sediment and soil C accumulated over the parent material and found that these created wetlands accumulated an average of 242 g C m-2 yr-1, 70% more than a similar natural wetland in the region and 26% more than the rate estimated for these same wetlands 5 yr before this study. The C sequestration of the naturally colonized wetland was 22% higher than that of the planted wetland (267 ± 17 vs. 219 ± 15 g C m-2 yr-1, respectively). Soil C accrual accounted for 66% of the aboveground net primary productivity on average. Open water communities had the highest C accumulation rates in both wetlands. This study shows that created wetlands can be natural, cost-effective tools to sequester C to mitigate the effect of greenhouse gas emissions.
WATER, CLIMATE CHANGE, AND FORESTS Watershed Stewardship for a Changing Climate
Water from forested watersheds provides irreplaceable habitat for aquatic and riparian species and supports our homes, farms, industries, and energy production. Secure, high-quality water from forests is fundamental to our prosperity and our stewardship responsibility. Yet population pressures, land uses, and rapid climate change combine to seriously threaten these waters and the resilience of watersheds in most places. Forest land managers are expected to anticipate and respond to these threats and steward forested watersheds to ensure the sustained protection and provision of water and the services it provides. Effective, constructive watershed stewardship requires that we think, collaborate, and act. We think to understand the values at risk and how watersheds can remain resilient, and we support our thinking with knowledge sharing and planning. We collaborate to develop common understandings and goals for watersheds and a robust, durable capacity for response that includes all stakeholders and is guided by science. We act to secure and steward resilient watersheds that will continue to provide crucial habitats and water supplies in the coming century by implementing practices that protect, maintain, and restore watershed processes and services.
The Influence of Climate, Soils, Weather, and Land Use on Primary Production and Biomass Seasonality in the US Great Plains
Identifying the conditions and mechanisms that control ecosystem processes, such as net primary production, is a central goal of ecosystem ecology. Ideas have ranged from single limiting-resource theories to colimitation by nutrients and climate, to simulation models with edaphic, climatic, and competitive controls. Although some investigators have begun to consider the influence of land-use practices, especially cropping, few studies have quantified the impact of cropping at large scales relative to other known controls over ecosystem processes. We used a 9-year record of produc- tivity, biomass seasonality, climate, weather, soil conditions, and cropping in the US Great Plains to quantify the controls over spatial and temporal patterns of net primary production and to esti- mate sensitivity to specific driving variables. We considered climate, soil conditions, and long-term average cropping as controls over spatial patterns, while weather and interannual cropping varia- tions were used as controls over temporal vari- ability. We found that variation in primary production is primarily spatial, whereas variation in seasonality is more evenly split between spatial and temporal components. Our statistical (multi- ple linear regression) models explained more of the variation in the amount of primary produc- tion than in its seasonality, and more of the spatial than the temporal patterns. Our results indicate that although climate is the most important variable for explaining spatial patterns, cropping explains a substantial amount of the residual variability. Soil texture and depth con- tributed very little to our models of spatial vari- ability. Weather and cropping deviation both made modest contributions to the models of temporal variability. These results suggest that the controls over seasonality and temporal variation are not well understood. Our sensitivity analysis indicates that production is more sensitive to climate than to weather and that it is very sen- sitive to cropping intensity. In addition to iden- tifying potential gaps in out knowledge, these results provide insight into the probable long- and short-term ecosystem response to changes in climate, weather, and cropping. Key words: primary production; carbon; land use; agriculture; climate; weather; soil; seasonality; cropping; grassland; US Great Plains.
Comparing carbon sequestration in temperate freshwater wetland communities
High productivity and waterlogged conditions make many freshwater wetlands significant carbon sinks. Most wet- land carbon studies focus on boreal peatlands, however, with less attention paid to other climates and to the effects of hydrogeomorphic settings and the importance of wetland vegetation communities on carbon sequestration. This study compares six temperate wetland communities in Ohio that belong to two distinct hydrogeomorphic types: an isolated depressional wetland site connected to the groundwater table, and a riverine flow-through wetland site that receives water from an agricultural watershed. Three cores were extracted in each community and analyzed for total carbon content to determine the soil carbon pool. Sequestration rates were determined by radiometric dating with 137Cs and 210Pb on a set of composite cores extracted in each of the six communities. Cores were also extracted in uplands adjacent to the wetlands at each site. Wetland communities had accretion rates ranging from 3.0 to 6.2 mm yr␣1. The depressional wetland sites had higher (P < 0.001) organic content (146 ± 4.2 gC kg␣1) and lower (P < 0.001) bulk density (0.55 ± 0.01 Mg m␣3) than the riverine ones (50.1 ± 6.9 gC kg␣1 and 0.74 ± 0.06 Mg m␣3). The soil carbon was 98–99% organic in the isolated depressional wetland communities and 85–98% organic in the riv- erine ones. The depressional wetland communities sequestered 317 ± 93 gC m␣2 yr␣1, more (P < 0.01) than the river- ine communities that sequestered 140 ± 16 gC m␣2 yr␣1. The highest sequestration rate was found in the Quercus palustris forested wetland community (473 gC m␣2 yr␣1), while the wetland community dominated by water lotus (Nelumbo lutea) was the most efficient of the riverine communities, sequestering 160 gC m␣2 yr␣1. These differences in sequestration suggest the importance of addressing wetland types and communities in more detail when assessing the role of wetlands as carbon sequestering systems in global carbon budgets. Keywords: 137Cs, 210Pb, carbon accumulation, Gahanna Woods, Nelumbo lutea, Old Woman Creek, Phragmites australis, Quercus palustris, wetland community, wetland hydrgeomorphology
Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin
Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high- elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spa- tially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ! 90% chance of persistence for 70 years (simi- lar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream frag- ments <7 km long, and those at the lowest elevations, are at the highest risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT popula- tions to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. Keywords: climate change, cutthroat trout, fragmentation, multiple stressors, native fish, stream temperature model, stream warming
Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment
Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corre- sponding influences on Earth’s climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeo- rological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expan- sion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensi- ble heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest. Keywords: carbon balance, evapotranspiration, forest disturbance and regrowth, forest management, net ecosystem productivity
Climate change and the invasion of California by grasses
Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait differences between groups allows us to predict changes in the exotic-native balance under climate change scenarios. Exotic species are more likely to be annual, taller, with larger leaves, larger seeds, higher specific leaf area, and higher leaf N percentage than native species. Across the state, all these traits are associated with regions with higher temperature. Therefore, we predict that increasing temperatures will favor trait states that tend to be possessed by exotic species, increasing the dominance of exotic species. This prediction is corroborated by the current distribution of exotic species richness relative to native richness in California; warmer areas contain higher proportions of exotic species. This pattern was very well captured by a simple model that predicts invasion severity given only the trait–climate relationship for native species and trait differences between native and exotic species. This study provides some of the first evidence for an important interaction between climate change and species invasions across very broad geographic and taxonomic scales.