Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home / Resources / Landscape Partnership Resources Library

Landscape Partnership Resources Library

Feedbacks of Terrestrial Ecosystems to Climate Change

Most modeling studies on terrestrial feedbacks to warming over the twenty-first century imply that the net feedbacks are negative—that changes in ecosystems, on the whole, resist warming, largely through ecosystem carbon storage. Although it is clear that potentially important mechanisms can lead to carbon storage, a number of less well- understood mechanisms, several of which are rarely or incompletely modeled, tend to diminish the negative feedbacks or lead to positive feedbacks. At high latitudes, negative feedbacks from forest expansion are likely to be largely or completely compensated by positive feedbacks from decreased albedo, increased carbon emissions from thawed permafrost, and increased wildfire. At low latitudes, negative feedbacks to warming will be decreased or eliminated, largely through direct human impacts. With modest warming, net feedbacks of terrestrial ecosystems to warming are likely to be negative in the tropics and positive at high latitudes. Larger amounts of warming will generally push the feedbacks toward the positive.

Read More…

Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

The energy returned on investment, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical pro- cedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power

Read More…

Bias in the attribution of forest carbon sinks

A substantial fraction of the terrestrial carbon sink, past and present, may be incorrectly attributed to environmental change rather than changes in forest management.

Read More…

EPA and the Army Corps’ Proposed Rule to Define “Waters of the United States”

Excerpt from summary : According to the agencies, the proposed rule would revise the existing regulatory definition of “waters of the United States” consistent with legal rulings—especially the Supreme Court cases—and science concerning the interconnectedness of tributaries, wetlands, and other waters to downstream waters and effects of these connections on the chemical, physical, and biological integrity of downstream waters. Waters that are “jurisdictional” are subject to the multiple regulatory requirements of the CWA: standards, discharge limitations, permits, and enforcement. Non-jurisdictional waters, in contrast, do not have the federal legal protection of those requirements. This report describes the March 25 proposed rule and includes a table comparing the existing regulatory language that defines “waters of the United States” with that in the proposal.

Read More…

Elevated Eocene Atmospheric CO2 and Its Subsequent Decline

Closing paragraph: Estimates of early Eocene atmospheric CO2 from Green River sodium carbonates are in the same range as those predicted by geochemical models (7). By È20 Ma, all available data (8) suggest ECO2^atm was at or near modern concentrations.

Read More…

Citizen Involvement in the U.S. Endangered Species Act

Data on listed species refute critiques of citizen involvement in the U.S. Endangered Species Act.

Read More…

Alleles underlying larval foraging behaviour influence adult dispersal in nature

The dispersal and migration of organisms have resulted in the colonisation of nearly every possible habitat and ultimately the extraordinary diversity of life. Animal dispersal tendencies are commonly heterogeneous (e.g. long vs. short) and non-random suggesting that phenotypic and genotypic variability between individuals can contribute to population-level heterogeneity in dis- persal. Using laboratory and field experiments, we demonstrate that natural allelic variation in a gene underlying a foraging polymorphism in larval fruit flies (for), also influences their dispersal tendencies as adults. Rover flies (forR; higher foraging activity) have consistently greater dispersal tendencies and are more likely to disperse longer distances than sitter flies (fors; lower foraging activity). Increasing for expression in the brain and nervous system increases dispersal in sitter flies. Our study supports the notion that variation in dispersal can be driven by intrinsic variation in food-dependent search behaviours and confirms that single gene pleiotropic effects can contrib- ute to population-level heterogeneity in dispersal.

Read More…

Biodiversity effects on ecosystem functioning change along environmental stress gradients

Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity–ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems.

Read More…

Energetic and biomechanical constraints on animal migration distance

Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model – that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration.

Read More…

Effects of tree mortality caused by a bark beetle outbreak on the ant community in the San Bernardino National Forest

Ants are used as bioindicators of the effects of disturbance on ecosystems for several reasons. First, ants are generally responsive to alteration of the biomass and diversity of the local plant community (Kalif et al., 2001) and other environmental variables (Underwood & Fisher, 2006). Second, because they occupy fixed nest locations, ants are affected by conditions on a very small scale, so that their presence and abundance are a better indicator of local conditions than are the presence or abundance of more mobile animals (Stephens & Wagner, 2006; Underwood & Fisher, 2006). Ants play important ecosystem roles and are therefore often a relevant choice for monitoring (Ho ̈lldobler & Wilson, 1990). They make up a significant percentage of the animal biomass in many ecosystems, they can be crucial to processes such as soil mixing and nutrient transport (Gentry & Stiritz, 1972), and they are important players in nutrient cycling and energy flow. Ants can also strongly influence the plant community via seed dispersal and granivory (Christian, 2001; Barrow et al., 2007). While the diversity of a given taxon is often not a reliable indicator of the diversity of other groups (Lawton et al., 1998; Bennett et al., 2009; Maleque et al., 2009; Wike et al., 2010), ant diversity is known to reflect the diversity of other invertebrates in ecosystems recovering from a disturbance in some cases (Andersen & Majer, 2004).The use of ants as bioindicators must be undertaken with caution (Underwood & Fisher, 2006). Different ant communities do not always respond to a disturbance in the same way (Arnan et al., 2009). In addition, broad measures of a bioindicator taxon, such as species richness or abundance, are potentially misleading. For instance, while it is popular to measure the species richness of bioindicator groups, the ant species richness of different habitats has been observed to respond differently to similar disturbances (Farji-Brener et al., 2002; Ratchford et al., 2005; Barrow et al., 2007), and ant species richness often does not respond at all unless disturbances are extreme (Andersen & Majer, 2004).Nonetheless, changes in the ant community can provide useful information about the responses of the ecosystem as a whole.

Read More…

Economic growth as the limiting factor for wildlife conservation

The concept of limiting factor includes the lack of welfare factors and the presence of decimating factors. Originally applied to populations and species, the concept may also be applied to wildlife in the aggregate. Because the decimating factor of economic growth eliminates welfare factors for virtually all imperiled species via the principle of competitive exclusion, economic growth may be classified as the limiting factor for wildlife conservation. The wildlife profes- sion has been virtually silent about this limiting factor, suggesting that the pro- fession has been laboring in futility. The public, exhorted by neoclassical economists and political leaders, supports economic growth as a national goal. To address the limiting factor for wildlife conservation, wildlife professionals need to become versed in the history of economic growth theory, neoclassical economic growth theory, and the alternative growth paradigm provided by ecological economics. The Wildlife Society should lead the natural resources professions in developing a position on economic growth. carrying capacity, competitive exclusion, ecological economics, economic growth, limiting factor, neoclassical economics, niche breadth, steady state economy

Read More…

Changes in forest productivity across Alaska consistent with biome shift

Changes in forest productivity across Alaska consistent with biome shift

Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal–tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline.

Read More…

A dispersal-induced paradox: synchrony and stability in stochastic metapopulations

Understanding how dispersal influences the dynamics of spatially distributed populations is a major priority of both basic and applied ecologists. Two well-known effects of dispersal are spatial synchrony (positively correlated population dynamics at different points in space) and dispersal-induced stability (the phenomenon whereby populations have simpler or less extinction-prone dynamics when they are linked by dispersal than when they are isolated). Although both these effects of dispersal should occur simultaneously, they have primarily been studied separately. Herein, I summarise evidence from the literature that these effects are expected to interact, and I use a series of models to characterise that interaction. In particular, I explore the observation that although dispersal can promote both synchrony and stability singly, it is widely held that synchrony paradoxically prevents dispersal-induced stability. I show here that in many realistic scenarios, dispersal is expected to promote both synchrony and stability at once despite this apparent destabilising influence of synchrony. This work demonstrates that studying the spatial and temporal impacts of dispersal together will be vital for the conservation and management of the many communities for which human activities are altering natural dispersal rates. Keywords Autoregressive model, correlated environmental stochasticity, dispersal, dispersal-induced stability, metapopulation, negative binomial model, Ricker model, spatial heterogeneity, synchrony.

Read More…

Extreme Weather Events in Europe: preparing for climate change adaptation

This study arises from the concern that changes in weather patterns will be one of the principal effects of climate change and with these will come extreme weather. This is of considerable consequence in Europe as it impacts on the vulnerability of communities across the continent and exposes them to environmental risks. It is now widely recognised that failures in international efforts to agree on the action necessary to limit global climate change mean that adaptation to its consequences is necessary and unavoidable (Solomon et al., 2007). The changes anticipated in the occurrence and character of extreme weather events are, in many cases, the dominant factor in designing adaptation measures. Policy communities within the EU have begun to consider appropriate responses to these changes and an EU adaptation strategy is under active development and implementation. There are also sectoral EU initiatives, for example on water shortages and heat waves, and, at a regional level, on planning for floods and storms. The basic and unavoidable challenge for decision makers is to find workable and cost-effective solutions when faced with increased probabilities of very costly adverse impacts. Information about the nature and scale of these changes is essential to guide decisions on appropriate solutions. Agenda-setting for climate change and adaptation has to take place in a social or/and political setting. Scientific information about temporal changes in the probability distributions of extreme weather events over Europe, the main focus of this report, is important for informing the social and political processes that it is hoped will lead to adequate climate-change adaptation measures in Europe. This report is focused on providing a working-level assessment of the current state of the quantitative understanding of relevant extreme weather phenomena and their impacts.

Read More…

Evolution of climate niches in European mammals?

Our ability to predict consequences of climate change is severely impaired by the lack of knowledge on the ability of species to adapt to changing environmental conditions. We used distribution data for 140 mammal species in Europe, together with data on climate, land cover and topography, to derive a statistical description of their realized climate niche. We then compared climate niche overlap of pairs of species, selected on the basis of phylogenetic information. In contrast to expectations, related species were not similar in their climate niche. Rather, even species pairs that had a common ancestor less than 1Ma already display very high climate niche distances. We interpret our finding as a strong inter- specific competitive constraint on the realized niche, rather than a rapid evolution of the fundamental niche. If correct, our results imply a very limited usefulness of climate niche models for the prediction of future mammal distributions.

Read More…

Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA

Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA

Climate change is expected to increase disturbances such as stand-replacing wildfire in many ecosystems, which have the potential to drive rapid turnover in ecological communities. Ecosystem recovery, and therefore maintenance of critical structures and functions (resilience), is likely to vary across environmental gradients such as moisture availability, but has received little study. We examined conifer regeneration a decade following complete stand-replacing wildfire in dry coniferous forests spanning a 700 m elevation gradient where low elevation sites had relatively high moisture stress due to the combination of high temperature and low precipitation. Conifer regeneration varied strongly across the elevation gradient, with little tree regeneration at warm and dry low elevation sites. Logistic regression models predicted rapid increases in regeneration across the elevation gradient for both seedlings of all conifer species and ponderosa pine seedlings individually. This pattern was especially pronounced for well-established seedlings (P38 cm in height). Graminoids dominated lower elevation sites following wildfire, which may have added to moisture stress for seedlings due to competition for water. These results suggest moisture stress can be a critical factor limiting conifer regeneration following stand- replacing wildfire in dry coniferous forests, with predicted increases in temperature and drought in the coming century likely to increase the importance of moisture stress. Strongly moisture limited forested sites may fail to regenerate for extended periods after stand-replacing disturbance, suggesting these sites are high priorities for management intervention where maintaining forests is a priority.

Read More…

Experimental climate change weakens the insurance effect of biodiversity

Ecosystems are simultaneously affected by biodiversity loss and climate change, but we know little about how these factors interact. We predicted that climate warming and CO2-enrichment should strengthen trophic cascades by reducing the relative efficiency of predation-resistant herbivores, if herbivore consumption rate trades off with predation resistance. This weakens the insurance effect of herbivore diversity. We tested this prediction using experimental ocean warming and acidification in seagrass mesocosms. Metaanalyses of published experiments first indicated that consumption rate trades off with predation resistance. The experiment then showed that three common herbivores together controlled macroalgae and facilitated seagrass dominance, regardless of climate change. When the predation-vulnerable herbivore was excluded in normal conditions, the two resistant herbivores maintained top-down control. Under warming, however, increased algal growth outstripped control by herbivores and the system became algal-dominated. Consequently, climate change can reduce the relative efficiency of resistant herbivores and weaken the insurance effect of biodiversity.

Read More…

Climate change hotspots in the United States

We use a multi-model, multi-scenario climate model ensemble to identify climate change hotspots in the continental United States. Our ensemble consists of the CMIP3 atmosphere-ocean general circulation models, along with a high-resolution nested climate modeling system. We test both high (A2) and low (B1) greenhouse gas emissions trajectories, as well as two different statistical metrics for identifying regional climate change hotspots. We find that the pattern of peak responsiveness in the CMIP3 ensemble is persistent across variations in GHG concentration, GHG trajectory, and identification method. Areas of the southwestern United States and northern Mexico are the most persistent hotspots. The high-resolution climate modeling system produces highly localized hotspots within the basic GCM structure, but with a higher sensitivity to the identification method. Across the ensemble, the pattern of relative climate change hotspots is shaped primarily by changes in interannual variability of the contributing variables rather than by changes in the long-term mean

Read More…

Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss

Here, we present a global-scale study based on 116 deep-sea sites that relates benthic biodiversity to several independent indicators of ecosystem functioning and efficiency. We show that deep-sea ecosystem functioning is exponentially related to deep-sea biodiversity and that ecosystem efficiency is also exponentially linked to functional biodiversity. These results suggest that a higher biodiversity supports higher rates of ecosystem processes and an increased efficiency with which these processes are performed. The exponential relationships presented here, being consistent across a wide range of deep-sea ecosystems, suggest that mutually positive functional interactions (ecological facilitation) can be common in the largest biome of our biosphere.Conclusions: Our results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds’ oceans.

Read More…

DOES WOOD SLOW DOWN “SLUDGE DRAGONS?” THE INTERACTION BETWEEN RIPARIAN ZONES AND DEBRIS FLOWS IN MOUNTAIN LANDSCAPES

Conservation measures for aquatic species throughout the Pacific Northwest rely heavily on maintaining forested riparian zones. A key rationale for this strategy is that the presence of standing and downed trees next to streams will provide a continuous source of wood, which is an important structural component of aquatic habitat. Yet little is known about the interactions between wood and debris flows, which are an important way that wood enters streams.Researchers from the PNW Research Station and Oregon State University created a physics-based simulation of debris flow dynamics in a headwater basin within the Oregon Coast Range. They found that the presence of wood funda- mentally changes the behavior of debris flows by reducing the momentum and distance that they travel. Because debris flow deposits are primary storage sites for sediment within headwater catchments, a shift toward shorter flows means that more sediment is stored higher up in watersheds. In addition, they found that zones with high densities of wood and sediment are relatively fixed in space and do not migrate downstream. This suggests that management strategies could specifically target achieving habitat objectives within these high accumulation zones, and there may be multiple management pathways for achieving these objectives.

Read More…