Landscape Partnership Resources Library
Pervasive Externalities at the Population, Consumption, and Environment Nexus
Growing concerns that contemporary patterns of economic development are unsustainable have given rise to an extensive empirical literature on population growth, consumption increases, and our growing use of nature’s products and services. However, far less has been done to reach a theoretical understanding of the socio-ecological processes at work at the population- consumption-environment nexus. In this Research Article, we highlight the ubiquity of externalities (which are the unaccounted for consequences for others, including future people) of decisions made by each of us on reproduction, consumption, and the use of our natural environment. Externalities, of which the “tragedy of the commons” remains the most widely discussed illustration, are a cause of inefficiency in the allocation of resources across space, time, and contingencies; in many situations, externalities accentuate inequity as well. Here, we identify and classify externalities in consumption and reproductive decisions and use of the natural environment so as to construct a unified theoretical framework for the study of data drawn from the nexus. We show that externalities at the nexus are not self-correcting in the marketplace. We also show that fundamental nonlinearities, built into several categories of externalities, amplify the socio-ecological processes operating at the nexus. Eliminating the externalities would, therefore, require urgent collective action at both local and global levels.
Vulnerability of terrestrial island vertebrates to projected sea-level rise
Sea-level rise (SLR) from global warming may have severe consequences for biodiversity; however, a baseline, broad- scale assessment of the potential consequences of SLR for island biodiversity is lacking. Here, we quantify area loss for over 12 900 islands and over 3000 terrestrial vertebrates in the Pacific and Southeast Asia under three different SLR scenarios (1 m, 3 m and 6 m). We used very fine-grained elevation information, which offered >100 times greater spatial detail than previous analyses and allowed us to evaluate thousands of hitherto not assessed small islands. Depending on the SLR scenario, we estimate that 15–62% of islands in our study region will be completely inundated and 19–24% will lose 50–99% of their area. Overall, we project that between 1% and 9% of the total island area in our study region may be lost. We find that Pacific species are 2–3 times more vulnerable than those in the Indomalayan or Australasian region and risk losing 4–22% of range area (1–6 m SLR). Species already listed as threatened by IUCN are particularly vulnerable compared with non-threatened species. Under a simple area loss–species loss proportion- ality assumption, we estimate that 37 island group endemic species in this region risk complete inundation of their current global distribution in the 1 m SLR scenario that is widely anticipated for this century (and 118 species under 3 m SLR). Our analysis provides a first, broad-scale estimate of the potential consequences of SLR for island biodiver- sity and our findings confirm that islands are extremely vulnerable to sea-level rise even within this century. Keywords: climate change, conservation, endemic species, island biogeography, range contractions, sea-level rise, threatened species, vertebrates
Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance
The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity
Sea-level rise (SLR) due to global warming will result in the loss of many coastal areas. The direct or primary effects due to inundation and erosion from SLR are currently being assessed; however, the indirect or secondary ecological effects, such as changes caused by the displacement of human populations, have not been previously evaluated. We examined the potential ecological consequences of future SLR on >1,200 islands in the Southeast Asian and the Pacific region. Using three SLR scenarios (1, 3, and 6 m elevation, where 1 m approximates most predictions by the end of this century), we assessed the consequences of primary and secondary SLR effects from human displacement on habi- tat availability and distributions of selected mammal species. We estimate that between 3–32% of the coastal zone of these islands could be lost from primary effects, and consequently 8–52 million people would become SLR refugees. Assuming that inundated urban and intensive agricultural areas will be relocated with an equal area of habitat loss in the hinterland, we project that secondary SLR effects can lead to an equal or even higher percent range loss than primary effects for at least 10–18% of the sample mammals in a moderate range loss scenario and for 22–46% in a maximum range loss scenario. In addition, we found some species to be more vulnerable to secondary than primary effects. Finally, we found high spatial variation in vulnerability: species on islands in Oceania are more vulnerable to primary SLR effects, whereas species on islands in Indo-Malaysia, with potentially 7–48 million SLR refugees, are more vulnerable to secondary effects. Our findings show that primary and secondary SLR effects can have enormous consequences for human inhabitants and island biodiversity, and that both need to be incorporated into ecological risk assessment, conservation, and regional planning. Keywords: conservation priorities, extinction risk, global change, human migration, human settlements, Indo-Malaysia, insular biodiversity, range contractions, sea-level change
Phylogenetic and functional diversity in large carnivore assemblages
Large terrestrial carnivores are important ecological components and promi- nent flagship species, but are often extinction prone owing to a combination of biological traits and high levels of human persecution. This study com- bines phylogenetic and functional diversity evaluations of global and continental large carnivore assemblages to provide a framework for conser- vation prioritization both between and within assemblages. Species-rich assemblages of large carnivores simultaneously had high phylogenetic and functional diversity, but species contributions to phylogenetic and func- tional diversity components were not positively correlated. The results further provide ecological justification for the largest carnivore species as a focus for conservation action, and suggests that range contraction is a likely cause of diminishing carnivore ecosystem function. This study high- lights that preserving species-rich carnivore assemblages will capture both high phylogenetic and functional diversity, but that prioritizing species within assemblages will involve trade-offs between optimizing contempor- ary ecosystem function versus the evolutionary potential for future ecosystem performance. Carnivora, predation, ecosystem function, conservation priorities, biodiversity
WWF : A CLOSING WINDOW OF OPPORTUNITY - GLOBAL GREENHOUSE REALITY 2008
Scientific evidence accumulating since the IPCC’s Fourth Assessment Report reveals that global warming is accelerating, at times far beyond projections outlined in earlier studies, including the latest IPCC Report. New modelling studies are providing updated and more detailed indications of the impacts of continued warming. The emerging evidence is that important aspects of climate change seem to have been underestimated and the impacts are being felt sooner. For example, early signs of change suggest that the less than 1°C of global warming that the world has experienced to date may have already triggered the first tipping point of the Earth’s climate system – a seasonally ice-free Arctic Ocean. This process could open the gates to rapid and abrupt climate change, rather than the gradual changes that have been projected so far.
Humans and Nature Duel Over the Next Decade’s Climate
Rising greenhouse gases are changing global climate, but during the next few decades natural climate variations will have a say as well, so researchers are scrambling to factor them in.
Presentation: Climate Change in CTR Design
Presentation by Scott Schwenk on Climate Change in the Connecticut River Design
Presentation: Climate Metrics and Latest Design Drafts
Presentation by Kevin McGarigal. Reviews new climate stressor metrics and how they were incorporated to generate a new core area network design.
Decision Documentation (updated 03-27-2015) [Word]
Mid-depth summary of decisions made throughout the full pilot process. Word document for contributing edits via track changes.
Decision Documentation (updated 03-27-2015)
Mid-depth summary of decisions made throughout the full pilot process
Products Documentation - Abstracts (Word)
Word version of the products documentation with active links. Must be downloaded to a personal computer. Updated on 4/1/2015, reflecting decisions made at the March 27 core team meeting.
Products Documentation - Abstracts (PDF)
PDF version of the products documentation - posted for viewing in the browser. Most recent update: 3/21/2015
Literature by Brook Trout Modeling Group
Literature
Brook Trout Modeler Questionnaire PDF
Text for Online Survey
Participant List - Urban Woodland Workshop, March 11, 2015
List of invitees and participants for the Urban Woodland Conservation and Management Workshop held on March 11, 2015 at NCTC, Shepherdstown, WV
Agenda - March 11, 2015 Workshop
Urban Woodlands Conservation and Management Workshop. Organized and facilitated by the National Park Service to identify and create opportunities for greater collaboration among urban woodland researchers and managers working to restore and manage urban woodland ecosystems. To view the goals and objectives of the workshop, please open the workshop agenda.
Energy Assessment News Release
A new study and online mapping tool by the Appalachian Landscape Conservation Cooperative (LCC) and The Nature Conservancy are intended to inform discussions among conservation agencies and organizations, industry, policy makers, regulators and the public on how to protect essential natural resources while realizing the benefits of increased domestic energy production.
Assessing Future Energy Development across the Appalachian LCC. Final Report
In this study funded by the Appalachian LCC, The Nature Conservancy assessed current and future energy development across the entire region. The research combined multiple layers of data on energy development trends and important natural resource and ecosystem services to give a comprehensive picture of what future energy development could look like in the Appalachians. It also shows where likely energy development areas will intersect with other significant values like intact forests, important streams, and vital ecological services such as drinking water supplies.
Fact Sheet: Assessing Future Energy Development Managers Guide
Provides a general overview of the need for the Energy Assessment research, the major products and findings that came out of the project, and the relevance of the study, models, and tools to the resource management community.