Videos
Contemporary ocean warming and freshwater conditions are related to later sea age at maturity in Atlantic salmon spawning in Norwegian rivers
Atlantic salmon populations are reported to be declining throughout its range, raising major management concerns. Variation in adult fish abundance may be due to variation in survival, growth, and timing of life history decisions. Given the complex life history, utilizing highly divergent habitats, the reasons for declines may be multiple and difficult to disentangle. Using recreational angling data of two sea age groups, one-sea-winter (1SW) and two-sea-winter (2SW) fish originated from the same smolt year class, we show that sea age at maturity of the returns has increased in 59 Norwegian rivers over the cohorts 1991– 2005. By means of linear mixed-effects models we found that the proportion of 1SW fish spawning in Norway has decreased concomitant with the increasing sea surface temperature experienced by the fish in autumn during their first year at sea. Furthermore, the decrease in the proportion of 1SW fish was influenced by freshwater conditions as measured by water discharge during summer months 1 year ahead of seaward migration. These results suggest that part of the variability in age at maturity can be explained by the large-scale changes occurring in the north-eastern Atlantic pelagic food web affecting postsmolt growth, and by differences in river conditions influencing presmolt growth rate and later upstream migration.
Pacific Region Climate Change Learning Opportunities - Nov 2014 Issue
A monthly e-newsletter aimed at helping you stay connected to climate change science learning opportunities relevant and integral to your conservation work.
Virtual Hot Spots
Physiological ecologists who design computer models to predict how animals handle heat are forecasting the effects of climate change
Plant Species Richness and Ecosystem Multifunctionality in Global Drylands
Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.
Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich
1st paragraph: Ehrlich FRS & Ehrlich [1] claim that over-population, over-consumption and the future climate mean that ‘preventing a global collapse of civilization is perhaps the foremost challenge confronting humanity’. What is missing from the well- referenced perspective of the potential downsides for the future of humanity is any balancing assessment of the progress being made on these three chal- lenges (and the many others they cite by way of detail) that suggests that the problems are being dealt with in a way that will not require a major disruption to the human condition or society. Earlier dire predictions have been made in the same mode by Malthus FRS [2] on food security, Jevons FRS [3] on coal exhaustion, King FRS & Murray [4] on peak oil, and by many others. They have all been overcome by the exercise of human ingenuity just as the doom was being prophesied with the deployment of steam engines to greatly improve agricultural efficiency, and the discoveries of oil and of fracking oil and gas, respectively, for the three examples given. It is incumbent on those who would continue to predict gloom to learn from history and make a comprehen- sive review of human progress before coming to their conclusions. The problems as perceived today by Ehrlich FRS and Ehrlich will be similarly seen off by work in progress by scientists and engineers. My comment is intended to summarize and reference the potential upsides being produced by today’s human ingenuity, and I leave the reader to weigh the balance for the future, taking into account the lessons of recent history.
Point of No Return :The massive climate threats we must avoid
The world is quickly reaching a Point of No Return for preventing the worst impacts of climate change. Continuing on the current course will make it difficult, if not impossible, to prevent the widespread and catastrophic impacts of climate change. The costs will be substantial: billions spent to deal with the destruction of extreme weather events, untold human suffering, and the deaths of tens of millions from the impacts by as soon as 2030.
Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions
Traits associated with seed dispersal vary tremendously among sympatric wind-dispersed plants. We used two contrasting tropical tree species, seed traps, micrometeorology, and a mechanistic model to evaluate how variation in four key traits affects seed dispersal by wind. The conceptual framework of movement ecology, wherein external factors (wind) interact with internal factors (plant traits) that enable movement and determine when and where movement occurs, fully captures the variable inputs and outputs of wind dispersal models and informs their interpretation. We used model calculations to evaluate the spatial pattern of dispersed seeds for the 16 factorial combinations of four traits. The study species differed dramatically in traits related to the timing of seed release, and a strong species by season interaction affected most aspects of the spatial pattern of dispersed seeds. A rich interplay among plant traits and seasonal differences in atmo- spheric conditions caused this interaction. Several of the same plant traits are crucial for both seed dispersal and other aspects of life history variation. Observed traits that limit dispersal are likely to be constrained by their life history consequences. atmospheric turbulence conditional seed release Coupled Eulerian-Lagrangian closure (CELC) model long distance dispersal tropical forest
Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers
The National Wildfire Coordinating Group definition of extreme fire behavior (EFB) indicates a level of fire behavior characteristics that ordinarily precludes methods of direct control action. One or more of the following is usually involved: high rate of spread, prolific crowning/spotting, presence of fire whirls, and strong convection column. Predictability is difficult because such fires often exercise some degree of influence on their environment and behave erratically, sometimes dangerously. Alternate terms include “blow up” and “fire storm.” Fire managers examining fires over the last 100 years have come to understand many of the factors necessary for EFB development. This work produced guidelines included in current firefighter training, which presents the current methods of predicting EFB by using the crown fire model, which is based on the environmental influences of weather, fuels, and topography. Current training does not include the full extent of scientific understanding. Material in current training programs is also not the most recent scientific knowledge. National Fire Plan funds have sponsored newer research related to wind profiles’ influence on fire behavior, plume growth, crown fires, fire dynamics in live fuels, and conditions associated with vortex development. Of significant concern is that characteristic features of EFB depend on condi- tions undetectable on the ground, relying fundamentally on invisible properties such as wind shear or atmospheric stability. Obviously no one completely understands all the factors contributing to EFB because of gaps in our knowledge. These gaps, as well as the limitations as to when various models or indices apply should be noted to avoid application where they are not appropriate or warranted. This synthesis will serve as a summary of existing extreme fire behavior knowledge for use by fire managers, firefighters, and fire researchers. The objective of this project is to synthesize existing EFB knowledge in a way that connects the weather, fuel, and topographic factors that contribute to development of EFB. This synthesis will focus on the state of the science, but will also consider how that science is currently presented to the fire management community, including incident commanders, fire behavior analysts, incident meteorologists, National Weather Service office forecasters, and firefighters. It will seek to clearly delineate the known, the unknown, and areas of research with the greatest potential impact on firefighter protection.
Wildfire, Wildlands, and People: Understanding and Preparing for Wildfire in the Wildland-Urban Interface: Gen. Tech. Rep. RMRS-GTR-299. Fort Collins, CO. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 36 p.
Fire has historically played a fundamental ecological role in many of America’s wildland areas. However, the rising number of homes in the wildland-urban interface (WUI), associated impacts on lives and property from wildfire, and escalating costs of wildfire management have led to an urgent need for communities to become “fire-adapted.” We present maps of the conterminous United States that illustrate historical natural fire regimes, the wildland-urban interface, and the number and location of structures burned since 1999. We outline a sampler of actions, programs, and community planning and development options to help decrease the risks of and damages from wildfire. Key Words: wildfire, community planning, fire-adapted, wildland-urban interface, defensible space
Thriving Arctic Bottom Dwellers Could Get Strangled by Warming
Many biologists hypothesize that climate change could hurt the Arctic benthos and the large creatures that live off it by wiping out ice (and hence ice algae), lengthening growing seasons for zooplankton, and giving warm- water species a foothold. “The way the system works now is very much in favor of the benthos,” says UAF polar ecologist Rolf Gradinger. “If the sys- tem changes, things could go downhill fast.”
Social Science at the Wildland-Urban Interface: a Compendium of Research Results to Create Fire-Adapted Communities
Over the past decade, a growing body of research has been conducted on the human dimensions of wildland fire. Building on a relatively small number of foundational studies, this research now addresses a wide range of topics including mitigation activities on private lands, fuels reduction treatments on public land, community impacts and resident behaviors during fire, acceptance of approaches to postfire restoration and recovery, and fire management policy and decisionmaking. As this research has matured, there has been a recognition of the need to examine the full body of resulting literature to synthesize disparate findings and identify lessons learned across studies. These lessons can then be applied to fostering fire-adapted communities—those communities that understand their risk and have taken action to mitigate their vulnerability and increase resilience. This compendium of social science research findings related to fire-adapted communities has resulted from a project funded by the Joint Fire Science Program (JFSP). As part of these efforts, the research team reviewed more than 200 publications of research results. Then the team convened a workshop with 16 scientists with extensive experience in the human dimensions of fire management issues. Workshop participants evaluated collective findings and discussed their application to support fire management activities. In addition to this compendium, project outputs were: 1) a synthesis of published literature specific to eight management questions identified by the JFSP, 2) a list of future research needs, 3) a bibliography, including abstracts, with accompanying subject area guide, and 4) a video featuring the experiences of agency personnel and community leaders in successful collaborative fire planning settings. This video is accompanied by a field guide for use by agency managers to more effectively participate in building fire-safe communities. In the sections that follow, we describe our approach to completing this review and present key findings from the literature. Our discussion is organized around five major topical areas: 1) homeowner/community mitigation, 2) public acceptance of fuels treatments on public lands, 3) homeowner actions during a fire, 4) postfire response and recovery, and 5) wildland fire policy and planning. The compendium concludes with a presentation of management implications and a bibliography of all material in this review.
FWS Conservation Strategy for the Upper Tennessee River Basin
The U.S. Fish and Wildlife Service, with assistance and guidance from the U.S. Geological Survey, states, and other partners, has developed a cost-effective conservation strategy for 36 imperiled freshwater fish and mussel species in the 22,360 square-mile Upper Tennessee River Basin.
Energy Forecast Mapping Tool Tutorial
This video presentation by Judy Dunscomb, Senior Conservation Scientist at The Nature Conservancy, provides a detailed overview of how to use the Energy Forecast Mapping Tool.
Products and Tools for Energy Modelling
Models of wind, shale gas, and coal development for the entire study area have been created to predict potential future energy development and impacts to natural resources within the Appalachians. Models and data from all development projections populate a web-based mapping tool to help inform regional landscape planning decisions.
Assessing Future Energy Development
Assessing Future Energy Development across the Appalachian LCC uses models that combine data on energy development trends and identifies where these may intersect with important natural resource and ecosystem services to give a more comprehensive picture of what potential energy development could look like in the Appalachians. A web-based mapping tool allows policy makers, land management agencies, industries, and others to see where development may likely occur and intersect with important natural values to inform regional landscape planning decisions. Ultimately this information is intended to support dialogue and conservation on how to effectively avoid, minimize, and offset impacts from energy development to important natural areas and the valuable services they provide.
Energy Forecast Mapping Tool Tutorial
This video presentation by Judy Dunscomb, Senior Conservation Scientist at The Nature Conservancy, provides a detailed overview of how to use the Energy Forecast Mapping Tool.
Products and Tools
Models of wind, shale gas, and coal development for the entire study area have been created to predict potential future energy development and impacts to natural resources within the Appalachians. Models and data from all development projections populate a web-based mapping tool to help inform regional landscape planning decisions.
AppLCC - Goal 1
Goal 1 update reporting on progress as of Aug 2014
Document: January Core Team Meeting Notes/Summary
Notes and summary of presentations and discussions at the January Core Team meeting.